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A broad range of complex, dynamical systems have demonstrated
a tendency towards sudden dynamical regime shifts in response to
slow changes in external conditions, which are often difficult to
reverse—so called tipping points or critical transitions. In this report,
the theoretical basis for stability is examined, as well as two broad
approaches to predicting critical transitions: explicit process-based
modelling and statistical early warning signals. Published results
are summarised for two environmental case studies: abrupt global
climate shifts and eutrophication in shallow lakes, and the power and
limitations of each are discussed.
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Introduction

M any real-life complex, dynamical systems show regions
of stability—specific system states which are resilient
to external changes, where negative feedback loops correct
natural or man-made perturbations.

A catastrophe in these systems is typically some sudden
shift between different stable regions—from some beneficial
state, such as habitable environmental conditions, to a much
less desirable state. This can be catastrophic in numerous
ways: the destination state may be inhospitable, the sudden
change to reach this may be dangerous, or the destination
state may be chaotic and unpredictable.

A lot of research into the stability of systems focusses on
developing explicit models of the system processes involved,
and real-world catastrophes are predicted by considering the
outputs from simulations of these models, given a range of
feasible input values. While this approach has had some suc-
cesses, they can be poorly generalisable, display have a poor
track record by mask catastrophes caused by poorly under-
stood mechanisms|[9] or predict with too much uncertainty to
be useful for policy-making[28, 10]. The successes and failures
of some contemporary models for specific case system studies
are detailed in this paper.

A more recent branch of research has looked at other
approaches—testing a growing collection of indicators[23, 16],
which are statistical measures from time series data. The most
commonly studied indicators are detailed in this report, their
effectiveness and applicability is discussed.

This report begins with a concise primer of dynamic sys-
tems theory, although the interested reader will find more de-
tail in any good dynamical systems textbook, such as [26].
The report then focusses on two environmental case stud-
ies with known catastrophic critical points—abrupt climate
change and shallow lake eutrophication. However, many of
the techniques are applicable to a much wider array of dy-
namical systems, and have been used in academic areas as
diverse as ecology, finance and neuroscience.

Dynamical systems

A dynamical system mathematically formalises a system
whose state changes over time. The state can be represented
as some d-dimensional vector x € D, where D C R%—a unique
configuration of the system from a space of all possible con-

figurations. A dynamical system also considers some evolu-
tion rule, detailing how the state changes over time. For
continuous-valued models (flows), this is represented as an
ordinary differential equation 9x/¢+ = f(x), abbreviated by
convention to x. We also require the initial system state at
t=0: X0.

P=dpP/dt

Fig. 1. Diagram of the simple logistic population growth dynamical system. The
population P has positive growth in the range 0 < P < PJ', and a negative growth
rate for P > P —highlighted by the arrows on the P-axis. P" is an unstable fixed
point (open), while P is a stable fixed point (shaded).

As a simple example, Figure 1 shows a graphical represen-
tation of the logistic growth model: a simple model for popu-
lation dynamics. Here, we consider one variable—population,
P > 0. We see compound positive growth (P > 0) up to
the critical point P>, where the environment is saturated, and
growth slows (i.e. P < 0).

Firstly, we may notice the points P; and P, where
dP/gy = 0. If we are at either of these, we do not move
elsewhere—these are fized points. If we disturb Py to P +
€, then we see positive feedback propelling the population
higher. However, if we disturb P5, in either direction, then P
is propelled back to Py

We say that Py is stable or attracting, while P5 is unstable
or repelling.

Stability in Higher Dimensions. We can also determine stabil-
ity for a constant-coefficient linear dynamical system, x = Ax,
where A € R™*", with a single fixed point at x = 0. As
the evolution rule is linear, we can assume a solution fol-
lowing a linear trajectory of the form x = ve' exists[26].
Therefore, X = Ave*. We substitute this back, to achieve
Aver = AveM = A\v = Av, which is the eigenvector formu-
lation. Hence, we can consider whether the system undergoes
exponential growth or decay along vector v (representing 0O
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Fig. 2. Phase portraits around the origin for different stability classes of linear dynamical system X = Ax. (@) Both A < 0: stable fixed point. (b) Both A > 0:
unstable fixed point. (€) A1 < 0 < A2, stable along x, unstable along y: saddle point. (d) A € C, Re[A] < O: stable spiral.
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Fig. 3. Nonlinear system X = above, with linear approximation

X = (—01 é)x around origin below. The linear approximation accurately captures
the stability details (clockwise spiral attracting fixed point) at the origin.

—sinx

being the unstable or stable fixed point, respectively) by con-
sidering the eigenvalues A.

We often exclusively consider the eigenvalue with the
largest absolute value Apqz, as this dominates as t — 00[26}.

For real-valued eigenvalues, Aj.qac > 0 means the fixed
point is unstable (ve>‘t will grow), and Amaz < 0 means the
fixed point is stable (ve* decays to 0). If some are positive
and some are negative, this is a saddle point (stable in some
directions, unstable in the rest). Complex eigenvalues lead to
spiral points (e = cos6 + isin#), and the stability is deter-
mined by the real component. Figure 2 shows phase portraits
for the vector field x for each of these cases, in two-dimensions.

We can use this approach to approximate a nonlinear
system at a fixed point x* and considering a first-order trun-
cated Taylor expansion of the local gradient around the point,
which requires the Jacobian matrix J, a matrix of local par-
tial derivatives. The stability of the fixed point corresponds
to the eigenvalues of J.

Figure 3 shows an example of linearisation for a nonlinear
dynamical system.

Bifurcations. Often, we have dynamical systems with external
parameters, and wish to consider how changes in these para-
meters qualitatively modify the phase portrait — such as the
addition, removal or change in stability of fixed points. These
discrete changes of phase space topology occur at bifurcation
points.

A simple bifurcation family is the saddle-node bifurcation.
In this case, the dynamical system is of the general form
& = r 4 x?, with r as the control parameter. Figure 4 shows
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Fig. 4. Bifurcation diagram for the saddle-node bifurcation, & = 7 + 22, show-
ing how the fixed points change in response to control parameter r. The solid line
shows the position stable point; the dashed line, the unstable point. Below, the three
distinct cases are demonstrated in more detail: » < 0 (a), » =0 (b)and r > 0
(c) respectively.

the effect of varying r: for r > 0 we have no fixed points, for
r = 0 we have one semi-stable point (stable when approaching
from the left) and for r > 0 we have an attractor at —/r and
a repeller at /7.

Of course real dynamical systems are not so straightfor-
ward, but simple algebraic idealisations of bifurcations, are
referred to as mormal forms, which strip unnecessary non-
linear terms from many common real bifurcation types, but
still remain topologically equivalent.

The number of control parameter changes necessary to
undergo a bifurcation is called the codimension. Many bifur-
cations which are not “truly” codimension-one can be con-
sidered as such, since their normal forms can be written as
such.

It can often be helpful to picture the phase portrait as
some energy function—with attracting fixed points as local
minima. The basin of attraction of some fixed point x* the
set of surrounding points that converge to x™.

1 Strictly speaking, we should talk about transitions between dynamic regimes, as we may transition
into, for example, a stable orbit—however “state” is a commonly-used shorthand throughout the
literature.
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Earth as a dynamical system?

On an abstract level, environmental subsystems, or indeed
the whole Earth can be considered as a complex dynamical
systems—but the difficulty lies in accurately representing the
real-world system accurately, without being overwhelmed by
intractable detail. Thompson and Sieber (2011a) give the vital
elements to consider in climate modelling as the atmosphere,
ocean, land, ice and biosphere. Additionally, we consider some
external forces which may have an impact, such as solar radi-
ation. This is typically referred to as a forcing parameter.

The evolution rules are based on classical physics. In the-
ory, for given starting conditions, a fully accurate model, with
known deterministic forcing, would trace a single, unique tra-
jectory through the phase space. However, complex processes
are usually modelled stochastically. The most significant class
of modelling error is in poor understanding of, or ignorance
of subsystems—from faulty assumption or poor theory|[9].

Even if we are not explicitly and exactly trying to model
Earth processes, general theoretical findings from dynami-
cal systems (particularly bifurcation theory) prove useful into
gaining insight and information about such complex systems,
as demonstrated with early warning signals.

However, not all catastrophes occur from a bifurcation
controlled by some forcing parameter, and at least two other
mechanisms have been proposed. Firstly, noise-induced tran-
sitions—where we experience some random, stochastic change
in phosphorous concentration (P) large enough to drive the
lake away from the stable oligotrophic point into the basin
of attraction for the eutrophic state[28]. More recently, the
method of R-tipping has been identified, where a stable point
moves too quickly for the system to be decay to the point[1].

Tipping points and the environment

Many dynamical systems exhibit so-called critical transitions,
where the system rapidly performs a discontinuous, nonlinear
shift between states’. These are closely related to the concept
of tipping points, which captures the idea of difficult-to-reverse
changes—the tipping point is the cusp where the current sta-
ble state disappears, like a tightrope walker slowly leaning
to one side until the centre of mass reaches a critical angle,
causing them to fall.

In this report, we consider two case studies of environmen-
tal systems that undergo critical transition: abrupt climactic
shifts, and sudden eutrophication in shallow lakes.

Abrupt climate change.Often the Earth rapidly shifts be-
tween climate states at a significantly faster rate than external
forcing (slowly increasing solar activity)[28]. Abrupt climate
change is of particular interest to researchers, as human-
driven CO2 exacerbates the greenhouse effect, and seems like
it may drive the climate system beyond a tipping point in
the future. Lenton (2008) captures this notion through tip-
ping elements[17]—independent climate subsystems which are
known to undergo abrupt regime changes. Additionally, to
capture real-world political constraints retain a pragmatic
focus on the most significant elements, they fulfil the following
additional conditions:

1. There is empirical or theoretical evidence that there are
external parameters which can be combined to a single
control parameter «, and exceeding some aucritical CaUSES A
qualitative change in the phase portrait.

2. The control parameter « is at least partly controlled by
human intervention, which can be changed in a reasonable
political time horizon. i.e. avoid focussing on tipping points
that seem unavoidable.

Footline Author

3. To realistically predict and respond to the change would
take place within an ethical time horizon—catastrophe
in the distant future is not likely influence contemporary
policy.

4. There is significant interest in the effects of such changes,
such as directly affecting human welfare or biodiversity.

A crucial tipping element identified by Lenton (2008) is the
Atlantic Thermohaline Circulation (THC) system. As well as
wind, tides and the Coriolis effect, ocean currents are also af-
fected by a separate system of currents, driven by convection
of differing densities of water masses. The density of water
is primarily affected by two variables: heat (colder water is
denser) and salinity (freshwater is lighter). The water heat is
affected primarily by surface temperature (and to a lesser ex-
tent, underwater heat sources). Salinity can be increased by
evaporation (also driven by surface temperature) and ice for-
mation, and can be decreased by influxes of freshwater (such
as from melted ice).

The circulation takes place underwater, and spans a large
amount of the Earth’s ocean system, and is largely driven
by sinking of water masses at high latitudes. Much of the
nonlinearity, and positive feedback come from the salinity—
salinity in the deepwater formation regions encourages circula-
tion, which in turn return more saline water to the region[22].

The wind-driven Gulf stream provides a relatively temper-
ate climate to Western Europe, since the Atlantic THC “con-
veyor belt” carries warm water from equatorial regions—so
disruptions to this (from, e.g. Greenland Ice-Sheet meltwater)
could lead to regional cooling. Additionally, melting ice sheets
may cause positive feedback, as the underlying land/water
typically has lower albedo (reflectivity) than ice, leading to
correspondingly higher rates of absorption of solar radiation
and rising local air temperatures.

The THC system is well-understood from multiple models
to have a specifically a fold bifurcation structure. Simulations
and empirical records show bistability and hysteresis[28].

Lake eutrophication. As a second case study, we look at eu-
trophication in lakes. Typically, phosphates and other nu-
trients are the primary limiting growth factor for algae in a
lake environment. Human agricultural interventions, such as
phosphate-rich sewage or fertiliser runoff can spawn excessive
algae growth. The decomposition of dead algae by bacteria
uses oxygen, which is thus deprived from fish, shellfish and
non-algal vegetation at the bottom of the lake[25].

The transition between being oligotrophic (low levels of bi-
ological activity) to eutrophic tends to be rapid, as the ‘slow’
variable of increasing phosphate concentration can combine

»
>
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oligotropic

phosphorous concentration, P

> F
phosphorous input rate, I

Fig. 5. Bifurcation diagram showing a caricature of the fold model. The axes are
labelled with appropriate variables lake eutrophication. A path taken through a lake
system as the forcing is varied is highlighted in red.
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with ‘fast’ (sub-annual) variables such as water volume, and
trigger the eutrophication process[30]. The clearest visual sign
of eutrophication is the transparency of the lake, which tends
to be affected little until the critical transition, when the lake
suddenly becomes murkier.

Fold Bifurcation Model

Consider Figure 5, which is a simple bifurcation diagram for
lake eutrophication. The system follows a steady oligotrophic
state as we increase the rate of phosphorous entering the lake
system, «, until the bifurcation point F}, where this stable
state disappears, and the system is rapidly driven towards
the eutrophic state.

In the region F> < a < F) the system could be in either
stable state. This is known as a bistable region. This leads to
the phenomenon of hysteresis, where the state of a system can
depend on its previous path, leading to irreversibility: a small
change in « can nudge the lake from oligotrophic to eutrophic,
but a much larger reduction in « is then needed to reverse the
lake back into an oligotrophic state.

Prediction through modelling

The majority of attempts to predict catastrophes in systems
take place through explicit modelling of the processes and in-
teractions, and tuning these models to empirical parameters.
In this section, a high-level overview of some contemporary
models and modelling techniques for global climate systems
and lakes are offered.

Earth Climate Modelling. Modelling the global climate is a
large area of research, especially due to the influence of the
IPCC, and the crucial role that computational models play
in policy-making. In this section, the ideas behind state-of-
the-art modelling techniques for models featured in the latest
IPCC report are broadly covered.

Climate process models are developed by firstly consider-
ing some mathematical idealisation of the system components’
behaviour, from theoretical and empirical understanding. Fol-
lowing this, the system is discretised, typically as a 3-D grid,
consisting of latitude, longitude and height. Some processes
are too complex, or their behaviour is obscured by the coarse-
ness of the grid, to be modelled in their entirety, so may be
replaced with some intermediate conceptual model, referred
to as a parameterisation, which are often used to model cloud
cover or albedo. Simulating these models are complex, and
the most significant bottleneck tends to be available compu-
tational power. Practically, this places upper bounds on the
grid resolution—where higher resolution model is more accu-
rate, although not necessarily more reliable. A typical model
has a horizontal grid-size of 1° to 2° (latitude and longitude)
and 30-40 vertical layers for the atmosphere. Additionally,
there are also restrictions on which processes can be included.
Often, the tradeoff is such that improving parameterisations,
and adding more processes produces higher accuracy than im-
proving resolution[10].

The old standard model class is the Atmosphere-Ocean
General Circulation Model (AOGCM), which considers the
dynamics of atmosphere, ocean, land and sea ice, with green-
house gas and aerosol forcing. The current state of the
art class is the Earth System Model (ESM), which extend
AOGCMs by also considering biogeochemical cycles. Finally,
some models fall under the class of Farth system Models of
Intermediate Complerity (EMICs), which trade-off simulat-
ing all relevant components, at the expense of resolution—

4|

typically including processes which are absent from ESMs,
such as ice sheets and ocean sediment[10].

The performance of climate models is determined by com-
paring simulation results with observed estimates, for depen-
dent variables of interest, such as global temperature dis-
tributions. This typically involves ensemble results, which
combine the results from multiple simulations. This could
be from different research groups’ models (multi-model en-
semble), or on an individual model, with different param-
eters (perturbed parameter ensemble). While this reduces and
quantifies the uncertainty of models, there are several limita-
tions. Firstly, there is still bias in models, as researchers share
many component resources, and the sample size of models is
small. Additionally, there are difficulties in determining how
to average the ensemble results. Techniques can range from
a simple unweighted mean of individual results, to sophisti-
cated Bayesian methods, and can have a significant effect on
the end-result[10].

GENIE-2 is an example of a model which has been used
to test predictions of tipping points—specifically the collapse
of Atlantic THC. The existence of two stable regions (on/off),
and hysteresis under reduction of freshwater forcing have been
known from simple classical models, however the use of a full
OAGCM can more thoroughly answer where the bifurcation
point exists in the space of background model parameters,
and determine the likelihood of collapse over an ensemble of
forcing parameters. Under most scenarios, however, there
tended to be disagreement between members of the ensem-
ble. When testing an idealised CO2 trajectory, some collapse
reversibly, and some do not collapse at all. Whilst testing
a mid-range estimate of 3° C warming, all members showed
weakening of THC but the majority did not collapse. By in-
corporating extra sources of freshwater (such as Greenland
ice sheets), a greater proportion collapsed, but was still far
from definitive. The authors argue that better, higher resolu-
tion historic time series are needed, to constrain the variance
of background parameters under consideration, which should
lead to higher agreement amongst ensembles, and therefore
more useful predictions[18].

Lake Modelling. The de facto lake models studying eutrophi-
cation are those developed by Carpenter[7, 6]. The first is a
simple model[7] for the concentration of phosphorous, P:

dP =
i =1 sP+rmq+Pq [1]

where [ is phosphorous input from the lake’s watershed; s
is the rate of phosphorous loss to sediment/biomass seques-
tration or flowing into another water system; and the final
term describes the recycling process—with maximum recy-
cling rate r; m as a calibration term for the amount of con-
centration of phosphorous at the half-maximum recycling rate;
and ¢ as a steepness parameter, primarily determined by the
depth of the lake. This model was later extended[6] to in-
clude the processes involving the internal forcing dynamics of
the outflow of sequestered phosphorous from the lake’s sedi-
ment, believed to be the significant factor for the hysteresis
observed in eutrophication—however, the model is still in a
simple form that allows symbolic analysis, unlike most con-
temporary climate models.

Carpenter (2005) estimates the tipping point for a specific
example (Lake Mendota) is predicted, by using parameter es-
timates (from empirical data), and analytically determining
the fixed points (roots) of the explicit dynamical system equa-
tions. This produces more precise answers than more complex
models, like OAGCMs, but may masks much of the underly-
ing uncertainty—and there is no evidence to suggest whether
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the prediction of fixed points is accurate. There is reason
to believe the model is too simple, as it fails to incorporate
identified complexities in lake systems such as: complex pop-
ulation dynamics, dependence on short-term weather patterns
and the topology of lake components (e.g. if shallow parts are
connected to deeper parts)[25].

Generic early warning signals

By taking a dynamical systems perspective, we can look at
the fold bifurcation as an idealisation of catastrophic bifurca-
tions, and determine general properties about systems as they
approach these bifurcation points.

Critical Slowing Down. As systems tend towards the bifur-
cation point, they often have a tendency to “slow down”,
meaning they take longer to return to their stable state when
exposed to small perturbations. This can be viewed as the
basin of attraction of the fixed point becoming shallower, as
the system comes closer to the bifurcation point[29].

Ideally, we would determine how close a system is to the bi-
furcation point by subjecting the system to perturbations and
measuring the response time to return to the stable state—
however intervention is usually infeasible. Usually the driving
forces tend to be more difficult to reverse (the problem in the
first place), and we do not wish to risk perturbing too much,
and tipping over. We can, however, observe indicators of crit-
ical slowing down from time series data, as the systems are
typically already being subjected to natural stochastic pertur-
bations.

Slowing down should correspond to a change in various
computable metrics, which can then be used as indicator vari-
ables. These variables tend to be valid for any dynamical
system whose tipping point sufficiently approximates the fold
bifurcation, thus providing a class of early warning signals for
a wide variety of dynamical systems.

Critical slowing down also offers some other helpful prop-
erties [29]. Firstly, the slowing down, when tested on mod-
els, tends to begin significantly before the threshold point is
reached. Secondly, critical slowing down can indicate non-
stable state tipping points, such as an oscillatory dynamic
regime. Finally, many signals have shown a tendency to
change at a linear rate when approaching the tipping point,
which aids in prediction accuracy[17].

Formally, as the system tends closer to the bifurcation
point, the dominant eigenvalue of the Jacobian tends to zero.
This is demonstrated mathematically for the normal-form
saddle-node bifurcation, as defined in Section 2:

The saddle-node bifurcation of the form 4 = f(z) with
f(z) = 2® — r has a stable point #} = —/r for r > 0, and an
unstable point at x5 = /r The size of the basin of attraction
between the stable point and the unstable point is B = 24/r.
We can consider the response to a perturbation of € from the
stable point by Taylor expansion around x7:

f@ite) = e+ Ll e

T=x]

d *

a [.7)1 +E] =
= f(z1) —2eVr
= f(x]) + A&, such that A= —B. [2]

We define A < 0 to encapsulate the linear decay rate
(LDR). Notice that at the critical threshold, » = 0, that the
recovery rate is 0, and scales linearly with the size of the basin,
B. These results (including linearity) are common to many
bifurcations[28].

Footline Author

Flickering. To detect critical slowing down, we need time series
data of high enough resolution to capture the return from
natural perturbations. If the sampling rate is lower than the
average return time, then we cannot expect to notice the slow-
ing down.

Another phenomenon that might be observed near to a
tipping point, is ‘flickering’—where the system begins to os-
cillate between multiple stable state basins. Flickering can
also be a useful indicator when we expecting high levels of
stochastic noise in our measurements[30] (which may other-
wise obscure critical slowing down).

Early Warning Indicators

Some of the most commonly used metrics, on discrete uni-
variate time series are detailed below. In these examples, we
denote Y1, ..., Yx as the measurements of the dependent vari-
able at times X1, -+, Xy. Y denotes the empirical mean over
the time series.

Often, we consider a fixed-size sliding window: for a
window length w, the measure at point ¢ < N is computed
over the time series Y;_.,,---,Y;. This is typically done to
avoid potential bias from a changing time series size, al-
though then the window length w is left as a parameter to
be selected—this is a tradeoff between accuracy (longer series
produce more robust estimates) and having enough points to
determine a trend. A common heuristic is to use w = N/2.

Autocorrelation. When slowing down, the state at each time
step becomes progressively more dependent on the value at
the previous step—i.e. the correlation between time-steps in-
creases. Autocorrelation measures the correlation of a time
series signal with itself, separated by a time lag k. Figure 6
shows some of the intuition behind this: the system state at
time ¢ is much more similar to the state at t + 1 when the
potential surrounding the fixed point is shallower[13].
Calculating the autocorrelation is typically done by fit-
ting an order-K autoregressive model, denoted AR(K). This
is a predictive linear model, which predicts Y41 from a linear
combination of the previous K values (Yz, Yi—1,---,Yi—k).
Formally, an AR(K) model looks like:

K
Yit1 = ZakYt—k + Met1 [3]

k=1

where a = (a1 --- aK)T are the prediction coefficients to
be fitted, and 711 ~ N (1, 0%) is a Gaussian noise term.

This model differs from standard linear regression, as it
does not assume that the values of Y are i.i.d. (identically
and independently distributed), and the order of data points
matters—there are dependencies between time-separated val-
ues. The AR model does, however, assume that the time-
series Y is weakly stationary, which means it satisfies the fol-
lowing three properties across the whole series:

1. Mean E(Y;) = 0.

2. Variance is constant: Var(Y;) = Var(Yiq1).

3. Covariance/correlation between Y; and Y:_x is constant
across the whole series.

We are primarily interested in the sample autocorrelation
(ACF), which gives the correlations between Y; and Y; . For
an AR(1) model, of the form Y;y1 = a1Y;, the lag-1 autocor-
relation is simply a;.

Thompson and Sieber (2011a) define a standard approach:

1. Interpolation. Most time series data are not spaced
equally. The time series needs to be interpolated (usually
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Fig. 6. This diagram shows the system as a potential landscape, with attracting (stable) fixed points &1 (initial state) and 22 (alternative state) with associated basins
denoted B. The qualitative topology of the landscape changes as we approach a bifurcation point, which can be used to explain the phenomena of critical slowing down. In
(a), the system is far from transition, and the basin of the stable state has steep walls—so we return to the fixed point rapidly, following perturbations. In (b), we are closer
to the bifurcation point, and the basin of attraction becomes shallower in an asymmetric manner. Based on diagram from www.early-warning-signals.com.

linearly), and the interpolation is sampled at equidistant
points.

2. Detrending. The time series is not necessarily stationary
(as the fixed points may slowly drift through other forces).
A moving average at each point Y; can be computed, often
using a Gaussian kernel approach. Subtracting this moving
average gives a new time series Z; = Y; — Y; with a mean
of zero..

3. Moving Window. The time series within this window
should be fit to an AR(1) model. In this case, a; is related
to the LDR, «, as a = exp (a1 At).

Having fitted the AR model to the empirical data, we can
use this model predict the tipping point, by extrapolating a;
from each window, to find the ¢ where a; = 1.

We can show that critical slowing down leads to increased
lag-1 autocorrelation. Firstly, without loss of generality, we
assume that the stochastic disturbance n ~ N(0,0?) from
the stable point ™ occurs at at some regularly spaced inter-
vals of At. The system returns to z*, between the perturba-
tions with an LDR of A. The discretised evolution rule (for
t =0,At,2At,...) on the recovery of z can be approximated
as:

M @0 — &) + 0 (4]

i.e. the deviation from the stable point at time step t+1 is
equal to the amount by which the system has recovered from
the previous disturbance, and the next stochastic forcing. By
centring around the stable point (Y = z — ™), we can write
this as an AR(1) process:

Tyr1—T =€

a1 = e)\At [5]

Critical slowing down shows that A — 0 as we approach
the critical point, so the lag-1 ACF coefficient a1 — 1.

As a note, the disturbances modelled need not actually
be identically and independently distributed (i.i.d.). The im-
plicit assumptions made above involve the relative distinction
of the time scales that certain dynamical processes operate
on. The timescale of stochastic noise (7;,) events needs to
be faster than the timescale of the return rate (1), so that
the compound effect of many individual disturbances can ap-
proximate a normal distribution (by central limit theorem).
Additionally, we only observe non-zero autocorrelation when
the system has not returned to =™ after the interval At ~ 7.

Yit1 = a1Yr + Ny,

Detrended Fluctuation Analysis (DFA). One significant lim-
itation of autocorrelation, is the need for a relatively long
time series to obtain a robust autocorrelation estimate. Addi-
tionally, autocorrelation struggles when analysing time series
data produced by a process with long-term memory. DFA
originated in the bioinformatics literature, where it was de-
veloped to detect long-range correlation in DNA sequences.
Here the assumption is that the fractal has some form of

6|

fractal structure, with self-similarity preventing the existence
of a characteristic scale [21, 20]. Formally, a fractal time-series
Y =Y ...Yn satisfies

Y (t) =a®Y (t/a) (6]

where = means that the first and second-order statistical
properties are identical, and « is the self-similarity param-
eter. Under this relation, a self-similar process with o« > 0
would have to exponentially grow in amplitude, however we
are primarily interested in finding self-similarity in time series
data with physically bounded amplitude. The “trick” em-
ployed by DFA is to consider the integral of the time series,
which is unbounded. The algorithm employs three steps:

1. Integration. This achieves an unbounded series Y’ (k) =
Zle [Yi — Y], where Y is the empirical mean of Y, for all
k =1..N points in Y.

2. Detrending. Firstly, Y’ is split into equally-sized win-
dows with n points. In each section, the local trend is
estimated by fitting a line, with Y-coordinate of any point
k denoted as Y, (k).

3. Determining characteristic scale. The root-mean-
square fluctuation from the trend-lines is calculated over
all windows:

N D0 (R) — Yk

k=1

F(n) =

This is repeated for different window sizes, and we can de-
termine « by plotting n against F'(n) on a log-log graph—
as F(n) « n® (the fluctuations in small boxes should
share the same statistical properties as fluctuations in large
boxes).

A result of 0.5 < a < 1.0 means that long-range tem-
poral correlations exist, so we would expect a process with
long-term memory that is undergoing critical slowing to have
a DFA exponent « that tends to 1.

Variance. Close to a bifurcation point, the system tends to
move more widely, as the basin becomes shallower. Addition-
ally, the response variable will move further under perturba-
tions, so increased variance should correspond with approach-
ing a bifurcation point[15, 30].

Formally, the variance over a time series is the expected
value of the square of the deviation from the mean:

Var(v) = & 3 (1= V)’ (7]

Additionally, increased variance can serve as an indicator
of flickering, as the system oscillates between multiple stable

Footline Author



states[30]. It has been shown in eutrophication models with
that variance can increase, despite noise heavy enough to show
decreasing lag-1 autocorrelation and skewness.

The increase in variance can be shown formally, based on
the AR(1) model in Equation 3. By the assumption of sta-
tionarity, we can assume Y41 = Y;.

Var(Yit1) Var(a1Ys + nev1)

= a?Var(Yt) + Var(ne+)

= aiVar(Yip) +0°

0_2

= T4 (8]

As A — 00, a1 — 0, so the variance increases towards
infinity.

Skewness. This is a measure of asymmetry about the mean.
For a discrete time series, the sample skew is:

¥, (Vi = Y)?

(% TiLy (¥; = V)2)2

For intuition, Figure 6a shows that far from the transition,
the response to perturbations will tend to be symmetrical—if
the attractor state has symmetrical potential gradients, and
the stochastic noise is symmetric, and less than the size of the
attractor basin. However, as we get closer to the saddle be-
tween seats, we see an asymmetry: disturbances towards the
saddle will have a slower response (lower potential gradient)
than disturbances away from the saddle—so we expect to see
more time spent recovering from perturbations towards the
saddle, assuming symmetric stochastic noise.

Skew(Y) = [9]

Empirical Results Summary

As a brief review of published results, there are numerous
findings showing increased autocorrelation associated with
THC tipping in models[13, 17] (CLIMBER-2, GENIE-1) and
paleo-records (increasing ACF leading to 8/8 abrupt climate
events)[8]. Additionally, DFA has been tested for THC
collapse in models[20, 17] (GENIE-1, GENIE-2). These ap-
proaches all use the preparation conventions outlined earlier.

A less naive analysis is performed by Lenton et al.
2012[19], across three ice-core records (Vostok, GISP2
and Cariaco) and three models (CLIMBER-1, GENIE-1 and
GENIE-2)—with a distribution of early warning signals for
differing window lengths and detrending Gaussian filter band-
widths. The distribution of Kendall’s 72 for each is estimated,
giving a broader picture of the resilience of each metric. Com-
pared to ACF, DFA showed weaker signals (mean of 7 closer to
0), but was less sensitive to the parameters than ACF (smaller
s.d. of 7). Additionally, there was disagreement over variance
between the empirical datasets, with 2/3 predicting decreasing
variance.

Lake systems offers a partial reversal to expectations. The
Carpenter model shows increased ACF and skew while ap-
proaching eutrophication[11] as expected, but simpler models
and measurements from Lake FErhai show decreasing autocor-
relation and skewness[30]. Variance, however, offers a more
robust signal, increasing in all cases[11, 30].

Generic Indicator Limitations

An obvious limitation of early warning signals is their inability
to detect what type of bifurcation is being approached, as well
as the corresponding dynamical regime after the transition.

Footline Author

Assumptions. Firstly, Boettiger and Hastings (2012b) note
two implicit assumptions. Firstly, that the system is ap-
proaching a saddle-node bifurcation. Other bifurcation types
can exhibit critical slowing, without a tipping point, such as
the transcritical pitchfork. Secondly, that the system is being
brought to the critical point by a gradual, monotonic change in
some forcing parameter. The authors also note other possibil-
ities for regime changes: a large, discontinuous perturbation,
stochastic noise-induced transitions or a bifurcation parame-
ter that varies in a highly rapid/nonlinear way[3]. The saddle-
node is likely to be a reasonable assumption in the case of
Atlantic THC and lake eutrophication, as these have theoret-
ically and empirically demonstrated behaviour approximating
the fold bifurcation (well approximated by a saddle-node at
the ends of the bistable region).

Additionally, Thompson and Sieber (201la) note that
there is no a priori reason to assume distinct timescales[2].

False Negatives. Both noise-induced transitions and R-tipping
are two transitions that are not likely to show critical slowing,
so indicators would fail to predict a critical transition.

If the noise level is relatively low, we would need to be
close to the tipping point before undergoing a noisy transi-
tion, so these indicators retain a chance of still being use-
ful. Thompson and Sieber (2011b) have attempted to derive
a probabilistic model, to predict the likelihood of a noise-
induced transition with respect to a bifurcation parameter
drift.

Tests on THC collapse on the GENIE-2 AOGCM, which
has a high level of stochastic noise (weather fluctuations) do
show qualitatively increasing ACF and DFA values, in spite
of the heavy noise[18].

False Positives. Boettiger and Hastings (2012b) identify that
many published results fail to consider the “prosecutor’s
fallacy”[2]. Most analyses of early-warning signals (EWS)
show an increase in the EWS (&) in some time series selected
because a known transition has occurred (7°), and is presented
as evidence that the signal is powerful. To formalise further,
this is usually argued to be evidence that P(7|€) is high—
whereas it is actually only showing that P(£|7) is high. These
two probabilities are not necessarily the same, particularly if
there are alternative hypotheses for transition (e.g. mnoise-
induced transition) or alternative causes for changes in EWS
values (R-tipping seems likely to increase autocorrelation).

The authors demonstrate that a random sample of win-
dows in replicates of a population dynamics system (not con-
ditioned on tipping) showed a statistically significant skew
towards increasing of autocorrelation and variance. This
demonstrates that early warning signals are likely to exhibit
a high rate of false positives.

Furthermore, Kéfi et al. (2012) demonstrate that sig-
nals based critical slowing down merely indicates an imminent
regime change—but there is no reason to assume this will be
catastrophic. Critical slowing may also precede, for example,
a transcritical or Hopf bifurcation.

Hypothesis Modelling. Many of these issues can overcome
through considering EWS detection as a probabilistic model
selection problem, where the distinct model parameters are es-
timated from the data, and the assumptions are explicitly en-
coded in the model[3]. One model corresponds to the hypoth-
esis that the time series is produced by a system approaching a

2A common rank correlation statistic, producing a value in the range —1 < 7 < 1. The coeffi-
cient is 1 if the time series monotonically increases (the series is already perfectly ordered in terms
of rank).
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saddle-node bifurcation, and the other (null) hypothesis that
the data is produced by a system not approaching a bifurca-
tion.

Firstly, if neither model matches well, this gives strong ev-
idence that the system violates modelling assumptions. Sec-
ondly, we can go further than a simple maximum likelihood
estimate of parameters, and train the models on multiple sim-
ulations/repeated measurements. This way, we can quan-
tify the tradeoff between false positive/false negative through
an ROC (Receiving Operator Curve) analysis, taking into
account a range of threshold values between both models’ pos-
terior distributions. In some of the examined models (Daphnia
population dynamics and glaciation), Boettiger and Hastings
(2012b) demonstrate that the autocorrelation and variance
overlap heavily between the models, implying they are not
universally robust EWSs. Additionally, they show that the
distribution of Kendall’s 7 on autocorrelation and variance
series in multiple empirical datasets has a positive skew (to-
wards 1), implying that autocorrelation and variance can have
a strong tendency to increase during normal circumstances (no
catastrophe approaching)[3].

Conclusions and Future Work

Whilst both process-based modelling and early warning sig-
nals are often used to predict catastrophes, there are crucial
differences between their scope.

Models tend to give much richer information—such as full-
time series projections and information about the bifurcation,
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including the potential impact of crossing a tipping point.
An early-warning signal merely indicates that we may be ap-
proaching some regime change, which is significantly less use-
ful. Additionally, model-based approaches allow the design of
counterfactual experiments, and simulate the results of a wide
range of policies.

Furthermore, process-based modelling has a stronger link
with theory—we tend to have a much better understanding
of where biases and inaccuracies lie. On the other hand, if
an early-warning signal does not predict well, then the cause
of failure is significantly less obvious, and it is not clear we
can simply create better early warning signals to catch these
missed phenomena. Similarly, our confidence in our predic-
tions, with multi-model ensembles, whereas it is unclear how
robust early warning signals are to being combined.

Early warning signals seem more appropriate as non-
critical indicators for small-scale systems, like lakes, where
the resources do not exist to build full models, as they are
cheaper to compute, avoid much of the difficulty in building
accurate models.

In general, many of the significant outstanding issues
concern the much more complex social layer, which plays an
integral role in determining the likelihood of events, consider-
ing multiple policies to prevent catastrophes, and an appro-
priate harm cost for the negative impacts of a catastrophe.
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